Interior Point Methods for Second-Order Cone Programming and OR Applications
نویسندگان
چکیده
Interior point methods (IPM) have been developed for all types of constrained optimization problems. In this work the extension of IPM to second order cone programming (SOCP) is studied based on the work of Andersen, Roos, and Terlaky. SOCP minimizes a linear objective function over the direct product of quadratic cones, rotated quadratic cones, and an affine set. It is described in detail how to convert several application problems to SOCP. Moreover, a proof is given of the existence of the step for the infeasible long-step path-following method. Furthermore, variants are developed of both long-step path-following and of predictor-corrector algorithms. Numerical results are presented and analyzed for those variants using test cases obtained from a number of application problems.
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملSolving A Fractional Program with Second Order Cone Constraint
We consider a fractional program with both linear and quadratic equation in numerator and denominator having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a second order cone programming (SOCP) problem. For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The p...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملAn infeasible interior-point algorithm with full Nesterov-Todd step for second-order cone programming
This paper proposes an infeasible interior-point algorithm with full Nesterov-Todd step for second-order cone programming, which is an extension of the work of Roos (SIAM J. Optim., 16(4):1110–1136, 2006). The polynomial bound coincides with that of infeasible interior-point methods for linear programming, namely, O(l log l/ε).
متن کاملA logarithmic barrier interior-point method based on majorant functions for second-order cone programming
We present a logarithmic barrier interior-point method for solving a second-order cone programming problem. Newton’s method is used to compute the descent direction, and majorant functions are used as an efficient alternative to line search methods to determine the displacement step along the direction. The efficiency of our method is shown by presenting numerical experiments.
متن کاملA Polynomial Primal-Dual Path-Following Algorithm for Second-order Cone Programming
Second-order cone programming (SOCP) is the problem of minimizing linear objective function over cross-section of second-order cones and an a ne space. Recently this problem gets more attention because of its various important applications including quadratically constrained convex quadratic programming. In this paper we deal with a primal-dual path-following algorithm for SOCP to show many of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 28 شماره
صفحات -
تاریخ انتشار 2004